Improve Your Boiler’s Combustion Efficiency

Combustion Efficiency

Operating your boiler with an optimum amount of excess air will minimize heat loss up the stack and improve combustion efficiency. Combustion efficiency is a measure of how effectively the heat content of a fuel is transferred into usable heat. The stack temperature and flue gas oxygen (or carbon dioxide) concentrations are primary indicators of combustion efficiency.

Given complete mixing, a precise or stoichiometric amount of air is required to completely react with a given quantity of fuel. In practice, combustion conditions are never ideal, and additional or “excess” air must be supplied to completely burn the fuel.

The correct amount of excess air is determined from analyzing flue gas oxygen or carbon dioxide concentrations. Inadequate excess air results in unburned combustibles (fuel, soot, smoke, and carbon monoxide) while too much results in heat lost due to the increased flue gas flow—thus lowering the overall boiler fuel-to-steam efficiency. The table relates stack readings to boiler performance.

Combustion Efficiency for Natural Gas

<table>
<thead>
<tr>
<th>Excess % Air</th>
<th>9.5</th>
<th>15.0</th>
<th>28.1</th>
<th>44.9</th>
<th>81.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>2.0</td>
<td>3.0</td>
<td>5.0</td>
<td>7.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Flue gas temperature less combustion air temp, °F</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>200</td>
<td>85.4</td>
<td>85.2</td>
<td>84.7</td>
<td>84.1</td>
<td>82.8</td>
</tr>
<tr>
<td>300</td>
<td>83.1</td>
<td>82.8</td>
<td>82.1</td>
<td>81.2</td>
<td>79.3</td>
</tr>
<tr>
<td>400</td>
<td>80.8</td>
<td>80.4</td>
<td>79.5</td>
<td>78.2</td>
<td>75.6</td>
</tr>
<tr>
<td>500</td>
<td>78.4</td>
<td>77.9</td>
<td>76.7</td>
<td>75.2</td>
<td>71.9</td>
</tr>
<tr>
<td>600</td>
<td>76.0</td>
<td>75.4</td>
<td>74.0</td>
<td>72.1</td>
<td>68.2</td>
</tr>
</tbody>
</table>

Assumes complete combustion with no water vapor in the combustion air.

On well-designed natural gas-fired systems, an excess air level of 10% is attainable. An often stated rule of thumb is that boiler efficiency can be increased by 1% for each 15% reduction in excess air or 40°F reduction in stack gas temperature.

Example

A boiler operates for 8,000 hours per year and consumes 500,000 MBtu of natural gas while producing 45,000 lb/hr of 150 psig steam. Stack gas measurements indicate an excess air level of 44.9% with a flue gas less combustion air temperature of 400°F. From the table, the boiler combustion efficiency is 78.2% (E1). Tuning the boiler reduces the excess air to 9.5% with a flue gas less combustion air temperature of 300°F. The boiler combustion efficiency increases to 83.1% (E2). Assuming a steam value of $4.50/MBtu, the annual cost savings are:

\[
\text{Cost Savings} = \text{Fuel Consumption} \times (1 - E1/E2) \times \text{steam cost}
\]

\[
= 29,482 \text{ MBtu/yr} \times \$4.50/\text{MBtu} = \$132,671 \text{ annually}
\]

Suggested Actions

Boilers often operate at excess air levels higher than the optimum. Periodically monitor flue gas composition and tune your boilers to maintain excess air at optimum levels.
The Office of Industrial Technologies (OIT), through partnerships with industry, government, and non-governmental organizations, develops and delivers advanced energy efficiency, renewable energy, and pollution prevention technologies for industrial applications. OIT is part of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy.

OIT encourages industry-wide efforts to boost resource productivity through a strategy called Industries of the Future (IOF). IOF focuses on the following nine energy and resource intensive industries:

- Agriculture
- Chemicals
- Glass
- Mining
- Steel
- Aluminum
- Forest Products
- Metal Casting
- Petroleum

To help industries begin to save energy, reduce costs, and cut pollution right away, IOF technical assistance programs offer a comprehensive portfolio of emerging technology, practices, tools, information, and resources in a variety of application areas, for example, motor systems, steam systems, compressed air systems, and combined heat and power systems. Likewise, IOF has Industrial Assessment Centers (IAC) throughout the U.S. that offer energy, waste, and productivity assessments to small and medium-sized manufacturers. Users can take advantage of the abundant resources, such as software, fact sheets, training materials, etc. available from the IOF technical assistance programs.

Motor Systems — helps industry increase productivity and reliability through energy-efficient electric motor-driven systems.

Documents -
- Buying an Energy-Efficient Electric Motor
- Optimizing Your Motor-Driven System
- Energy Management for Motor Driven Systems
- Improving Pumping System Performance: A Sourcebook for Industry

Software –
- MotorMaster+ 3.0 and training CD
- ASDMaster
- Pumping System Assessment Tool

Training –
- MotorMaster+ 3.0 Software
- Adjustable Speed Drive Application
- Pumping System Optimization
- Pumping System Assessment Tool

Steam Systems — helps industry enhance productivity, increase profits, and reduce emissions through better steam system management.

Documents –
- Energy Efficiency Handbook
- Plant Services Article - The Steam Challenge
- Energy Manager Article - Steaming Ahead
- Oak Ridge National Laboratory’s Insulation Guidelines
- 1998 IETC Steam Session Papers

Software –
- 3EPlus Software for Determining Optimal Insulation Thickness

Case Studies –
- Georgia Pacific Achieves 6-Month Payback
- Bethlehem Steel Showcase Demonstration

Training –
- Fundamentals of Compressed Air Systems
 (For schedule and location, call (800) 862-2086)

Compressed Air Systems — dedicated to improving the efficiency and performance of industrial compressed air systems.

Documents –
- Improving Compressed Air System Performance: A Sourcebook for Industry

Industrial Assessment Centers — enable small and medium-sized manufacturers to have comprehensive industrial assessments performed at no cost to the manufacturer.

Documents –
- IAC Database

Access the Web site at www.oit.doe.gov/steam.

For more information, simply check the box next to the product, fill out the form below and fax back to (360) 586-8303:

Name: ___________________________ Title: ___________________________
Organization: ___________________________
Address: __
City: ___________________________ State: ___________ Zip: ___________
Phone: __________________ Fax: __________________ E-mail: __________________
Comments: __

For more information on Motor, Steam, Compressed Air Systems, and IACs, call the Information Clearinghouse at (800) 862-2086.
For overall OIT and IOF information, contact the OIT Resource Room at (202) 586-2090 or access the Web site at www.oit.doe.gov.